Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 37

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Quantitative visualization of a radioactive plume with harmonizing gamma-ray imaging spectrometry and real-time atmospheric dispersion simulation based on 3D wind observation

Nagai, Haruyasu; Furuta, Yoshihiro*; Nakayama, Hiromasa; Satoh, Daiki

Journal of Nuclear Science and Technology, 60(11), p.1345 - 1360, 2023/11

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

A novel monitoring method for the quantitative visualization of 3D distribution of a radioactive plume and source term estimation of released radionuclides is proposed and its feasibility is demonstrated by preliminary test. The proposed method is the combination of gamma-ray imaging spectroscopy with the Electron Tracking Compton Camera (ETCC) and real-time high-resolution atmospheric dispersion simulation based on 3D wind observation with Doppler lidar. The 3D distribution of a specific radionuclide in a target radioactive plume is inversely reconstructed from line gamma-ray images from each radionuclide by several ETCCs located around the target by harmonizing with the air concentration distribution pattern of the plume predicted by real-time atmospheric dispersion simulation. A prototype of the analysis method was developed, showing a sufficient performance in several test cases using hypothetical data generated by numerical simulations of atmospheric dispersion and radiation transport.

JAEA Reports

Technical note for the cavitation damage inspection for interior surface of the mercury target vessel, 1; Development of specimen cutting machine for remote handling

Naoe, Takashi; Kinoshita, Hidetaka; Wakui, Takashi; Kogawa, Hiroyuki; Haga, Katsuhiro

JAEA-Technology 2022-018, 43 Pages, 2022/08

JAEA-Technology-2022-018.pdf:7.84MB

In the liquid mercury target system for the pulsed spallation neutron source of Materials and Life science experimental Facility (MLF) at the Japan in the Japan Proton Accelerator Research Complex (J-PARC), cavitation that is generated by the high-energy proton beam-induced pressure waves, resulting severe erosion damage on the interior surface of the mercury target vessel. The erosion damage is increased with increasing the proton beam power, and has the possibility to cause the leakage of mercury by the penetrated damage and/or the fatigue failure originated from erosion pits during operation. To achieve the long term stable operation under high-power proton beam, the mitigation technologies for cavitation erosion consisting of surface modification on the vessel interior surface, helium gas microbubble injection, double-walled beam window structure has been applied. The damage on interior surface of the vessel is never observed during the beam operation. Therefore, after the target operation term ends, we have cut out specimen from the target nose of the target vessel to inspect damaged surface in detail for verification of the cavitation damage mitigation technologies and lifetime estimation. We have developed the techniques of specimen cutting out by remote handling under high-radiation environment. Cutting method was gradually updated based on experience in actual cutting for the used target vessel. In this report, techniques of specimen cutting out for the beam entrance portion of the target vessel in high-radiation environment and overview of the results of specimen cutting from actual target vessels are described.

Journal Articles

Development on high-power spallation neutron sources with liquid metals

Futakawa, Masatoshi

Proceedings of 13th International Symposium on Advanced Science and Technology in Experimental Mechanics (13th ISEM'18) (USB Flash Drive), 6 Pages, 2018/10

Issues on the engineering technologies relating to high-power spallation neutron sources with liquid metals are introduced. The present status on research activities and results was reviewed.

Journal Articles

Release behavior of Cs and its chemical form during late phase of Fukushima Daiichi Nuclear Power Plant accident

Hidaka, Akihide; Yokoyama, Hiroya

Proceedings of Symposium on Water Chemistry and Corrosion in Nuclear Power Plants in Asia 2017 (AWC 2017) (USB Flash Drive), p.29 - 42, 2017/09

no abstracts in English

JAEA Reports

Summary of instructor training program in FY2014 aiming at Asian countries introducing nuclear technologies for peaceful use (Contract program)

Hidaka, Akihide; Nakano, Yoshihiro; Watanabe, Yoko; Arai, Nobuyoshi; Sawada, Makoto; Kanaizuka, Seiichi*; Katogi, Aki; Shimada, Mayuka*; Ishikawa, Tomomi*; Ebine, Masako*; et al.

JAEA-Review 2016-011, 208 Pages, 2016/07

JAEA-Review-2016-011-01.pdf:33.85MB
JAEA-Review-2016-011-02.pdf:27.68MB

JAEA has been conducting the Instructor Training Program (ITP) since 1996 under the auspices of MEXT to contribute to human resource development in currently 11 Asian countries in the field of radiation utilization for seeking peaceful use of nuclear energy. ITP consists of Instructor Training Course (ITC), Follow-up Training Course (FTC) and Nuclear Technology Seminars. In the ITP, trainings or seminars relating to technology for nuclear utilization are held in Japan by inviting nuclear related people from Asian countries to Japan and after that, the past trainees are supported during FTC by dispatching Japanese specialists to Asian countries. News Letter is also prepared to provide the broad range of information obtained through the trainings for local people near NPPs in Japan. The present report describes the activities of FY2014 ITP and future challenges for improving ITP more effectively.

Journal Articles

The Installation and the radiation protection of the optically stimulated luminescence reader with sealed beta source in the Toki Research Institute of Isotope Geology and Geochronology, Japan Atomic Energy Agency

Tokuyasu, Kayoko; Furuta, Sadaaki*; Kokubu, Yoko; Umeda, Koji

Nihon Hoshasen Anzen Kanri Gakkai-Shi, 15(1), p.80 - 87, 2016/07

An optically stimulated luminescence reader (Riso TL/OSL DA-20) was installed in Toki Research Institute of Isotope Geology and Geochronology (Toki-shi, Gifu Prefecture), Japan Atomic Energy Agency (JAEA) for dating the geological sample. An accumulated dose of the sample is obtained using the reader. Sealed beta source of strontium-90 is required to be mounted on the reader because repeated artificial irradiation is necessary for the accumulated dose estimation. However, there are not many introduction examples for the reader domestically, and the information as to radiation control of the reader is limited. We therefore report here the process of source loading on the reader and radiation control associated with the use of the source.

Journal Articles

Development of transportation container for the neutron startup source of High Temperature engineering Test Reactor (HTTR)

Shimazaki, Yosuke; Ono, Masato; Tochio, Daisuke; Takada, Shoji; Sawahata, Hiroaki; Kawamoto, Taiki; Hamamoto, Shimpei; Shinohara, Masanori

Proceedings of International Topical Meeting on Research Reactor Fuel Management and Meeting of the International Group on Reactor Research (RRFM/IGORR 2016) (Internet), p.1034 - 1042, 2016/03

In High Temperature Engineering Test Reactor (HTTR), three neutron holders containing $$^{252}$$Cf with 3.7 GBq for each are loaded in the graphite blocks and inserted into the reactor core as a neutron startup source which is changed at the interval of approximately ten years. These neutron holders containing the neutron sources are transported from the dealer's hot cell to HTTR using the transportation container. The holders loading to the graphite block are carried out in the fuel handling machine maintenance pit of HTTR. There were two technical issues for the safety handling work of the neutron holder. The one is the radiation exposure caused by significant movement of the container due to an earthquake, because the conventional transportation container was so large ($$phi$$1240 mm, h1855 mm) that it can not be fixed on the top floor of maintenance pit by bolts. The other is the falling of the neutron holder caused by the difficult remote handling work, because the neutron holder capsule was also so long ($$phi$$155 mm, h1285 mm) that it can not be pulled into the adequate working space in the maintenance pit. Therefore, a new and low cost transportation container, which can solve the issues, was developed. To avoid the neutron and $$gamma$$ ray exposure, smaller transportation container ($$phi$$820mm, h1150 mm) which can be fixed on the top floor of maintenance pit by bolts was developed. In addition, to avoid the falling of the neutron holder, smaller neutron holder capsule ($$phi$$75 mm, h135 mm) with simple handling mechanism which can be treated easily by manipulator was also developed. As the result of development, the neutron holder handling work was safely accomplished. Moreover, a cost reduction for manufacturing was also achieved by simplifying the mechanism of neutron holder capsule and downsizing.

JAEA Reports

Let's start learning radiation; Supplementary material on radiation for secondary school students

Watanabe, Yoko; Shimada, Mayuka*; Yamashita, Kiyonobu

JAEA-Review 2014-044, 65 Pages, 2015/01

JAEA-Review-2014-044.pdf:12.4MB
JAEA-Review-2014-044-appendix1(Students)(CD-ROM).pdf:7.28MB
JAEA-Review-2014-044-appendix2(Teacher)(CD-ROM).pdf:8.7MB

JAEA has been organizing training programs for engineers in Asian countries introducing nuclear technology. In 2012, we launched a course "Basic Radiation Knowledge for School Education" as we thought disseminating accurate knowledge on radiation to school students and public would also be important in those countries after Fukushima-Daiichi Nuclear Power Plant accident. MEXT published supplemental learning material on radiation for secondary school students and teachers in Japanese in October 2011. Since the original Japanese version is designed to give a clear explanation of radiation and covers various topics, we thought it would also be beneficial for young students in the world if the English version was available. The English version of this learning material has been favourably evaluated by the International Atomic Energy Agency and will be widely used as a practical educational tool in many countries around the world through the IAEA.

JAEA Reports

Minutes of the IFMIF technical meetings; May 17-20, 2005, Tokyo, Japan

IFMIF International Team

JAERI-Review 2005-027, 416 Pages, 2005/08

JAERI-Review-2005-027.pdf:48.34MB

The International Fusion Materials Irradiation Facility (IFMIF) Technical Meetings were held on May 17-20, 2005 at Japan Atomic Energy Research Institute (JAERI) Tokyo. The main objectives were (1) to review technical status of the subsystems; accelerator, target and test facilities, (2) to technically discuss interface issues between target and test facilities, (3) to review results of peer-reviews performed in the EU and Japan, (4) to harmonize design / experimental activities among the subsystems, (5) to review and discuss the Engineering Validation and Engineering Design Activity (EVEDA) tasks, and (6) to make a report of (1) - (5) to the IFMIF Executive Subcommittee. This report presents a brief summary of the Target Technical Meeting, Test Facilities Technical Meeting, Target / Test Facilities Interface Meeting, Accelerator Technical Meeting and the Technical Integration Meeting.

JAEA Reports

Failure probability analysis on mercury target vessel

Ishikura, Shuichi*; Shiga, Akio*; Futakawa, Masatoshi; Kogawa, Hiroyuki; Sato, Hiroshi; Haga, Katsuhiro; Ikeda, Yujiro

JAERI-Tech 2005-026, 65 Pages, 2005/03

JAERI-Tech-2005-026.pdf:2.86MB

Failure probability analysis was carried out to estimate the lifetime of the mercury target which will be installed into the JSNS (Japan spallation neutron source) in J-PARC (Japan Proton Accelerator Research Complex). The lifetime was estimated as taking loading condition and materials degradation into account. Considered loads imposed on the target vessel were the static stresses due to thermal expansion and static pre-pressure on He-gas and mercury and the dynamic stresses due to the thermally shocked pressure waves generated repeatedly at 25 Hz. Materials used in target vessel will be degraded by the fatigue, neutron and proton irradiation, mercury immersion and pitting damages, etc. The imposed stresses were evaluated through static and dynamic structural analyses. The material-degradations were deduced based on published experimental data. As results, it was quantitatively confirmed that the failure probability for the lifetime expected in the design is very much lower, 10$$^{-11}$$ in the safety hull, meaning that it will be hardly failed during the design lifetime. On the other hand, the beam window of mercury vessel suffered with high-pressure waves exhibits the failure probability of 12%. It was concluded, therefore, that the leaked mercury from the failed area at the beam window is adequately kept in the space between the safety hull and the mercury vessel to detect mercury-leakage sensors.

Journal Articles

Irradiation and penetration tests of boron-doped low activation concrete using 2.45 MeV and 14 MeV neutron sources

Morioka, Atsuhiko; Sato, Satoshi; Kinno, Masaharu*; Sakasai, Akira; Hori, Junichi*; Ochiai, Kentaro; Yamauchi, Michinori*; Nishitani, Takeo; Kaminaga, Atsushi; Masaki, Kei; et al.

Journal of Nuclear Materials, 329-333(2), p.1619 - 1623, 2004/08

 Times Cited Count:10 Percentile:55.63(Materials Science, Multidisciplinary)

The neutron penetration and the activation characteristics of the boron-doped low activation concrete were investigated for irradiation of 2.45 and 14 MeV neutrons. The shielding property of the 2 wt% boron-doped low activation concrete is superior to that of the 1 wt% boron for the thermal neutron, on the contrary to the no clear difference for the fast neutron. The total activity detected in the boron-doped low activation concrete was about one hundredth of that in the geostandard sample at more than 30 days cooling time. The total activity of the boron-doped concrete by major nuclei does not depend on the boron density for the 14 MeV neutron irradiation.

JAEA Reports

Minutes of the IFMIF technical meeting; December 4-5, 2003, Kyoto, Japan

IFMIF International Team

JAERI-Review 2004-008, 219 Pages, 2004/03

JAERI-Review-2004-008.pdf:35.23MB

The IFMIF Technical Meeting was held on December 4-5, 2003 at Shiran-kaikan, Kyoto University. The main objectives are (i) to finalize the Comprehensive Design Report (CDR), (ii) to discuss IFMIF cost and organization, (iii) to review technical status of major systems, transition phase activities and EVEDA plan. This report presents a brief summary of the results of the meeting. Agenda, participants list and presentation materials are attached as Appendix.

JAEA Reports

NuTEC annual report; April l, 2001 - March 31, 2002

Nuclear Technology and Education Center

JAERI-Review 2003-003, 81 Pages, 2003/05

JAERI-Review-2003-003.pdf:3.48MB

This report summarizes the educational activities and related management of the Nuclear Technology andEducation Center (NuTEC) during the 2001 fiscal year. Both Tokyo and Tokai Education Centers have successfully conducted almost all the planned domestic and international training courses. In addition Tokai Education Center has performed the 3nd nuclear supervisor training course and introduced a new course for special nuclear emergency preparedness in response to the legal amendment after the criticality accident. The sum total number of participants was 1,310. The International Technology Transfer Division has not only planned and organized the international training courses, but also taken charge of the 3nd workshop on Human Resource Development in Nuclear Field in Asian and Pasific Region. Various researches have been made to improve the educational program.

JAEA Reports

IFMIF-KEP; International Fusion Materials Irradiation Facility key element technology phase report

IFMIF International Team

JAERI-Tech 2003-005, 559 Pages, 2003/03

JAERI-Tech-2003-005.pdf:48.89MB

The International Fusion Materials Irradiation Facility (IFMIF) is an accelerator-based D-Li neutron source designed to produce an intense neutron field that will simulate the neutron environment of a D-T fusion reactor. IFMIF will provide a neutron flux equivalent to 2 MW/m$$^{2}$$, 20 dpa/y in Fe, in a volume of 500 cm$$^{3}$$ and will be used in the development and qualification of materials for fusion systems. The design activities of IFMIF are performed under an IEA collaboration which began in 1995. In 2000, a three-year Key Element Technology Phase (KEP) of IFMIF was undertaken to reduce the key technology risk factors. This KEP report describes the results of the three-year KEP activities in the major project areas of accelerator, target, test facilities and design integration.

JAEA Reports

Proceedings of the 3rd Workshop on Dosimetry for External Radiations; November 28-29, 2002, Japan Atomic Energy Research Institute, Tokai, Ibaraki, Japan

Yoshizawa, Michio; Endo, Akira

JAERI-Conf 2003-002, 166 Pages, 2003/03

JAERI-Conf-2003-002.pdf:9.79MB

The present report is Proceedings of the Third Workshop on Dosimetry for External Radiations, held at the Tokai Research Establishment, Japan Atomic Energy Research Institute (JAERI), in November 28-29, 2002. The proceedings comprises 16 papers and a summary of general discussion. The Third Workshop, subtitled "On an opportunity of the completion of the facility of calibration standards for neutron at JAERI", focused on neutron dosimetry and included presentations on the status of international neutron standards, the development of calibration techniques of neutron dosimeters using accelerator neutron sources, and dosimetry for high-energy neutrons. The workshop identified the directions for the future research and development in this field.

Journal Articles

Utilization of bio-resources by low energy electron beam

Kume, Tamikazu

Proceedings of 9th International Conference on Radiation Curing (RadTech Asia '03) (CD-ROM), 4 Pages, 2003/00

Utilization of bio-resources by radiation has been investigated for recycling the natural resources and reducing the environmental pollution. Polysaccharides such as chitosan and sodium alginate were easily degraded by irradiation and induced various kinds of biological activities, i.g. anti-microbial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Radiation degraded chitosan was effective to enhance the growth of plants in tissue culture. It was demonstrated that the liquid sample irradiation system using low energy EB was effective for the preparation of degraded polysaccharides. Methylcellulose (MC) can be crosslinked under certain radiation condition as same as carboxymethylcellulose (CMC) and produced the biodegradable hydrogel for medical and agricultural use. Treatment of soybean seeds by low energy EB enhanced the growth and the number of rhizobia on the root.

JAEA Reports

Performance test of micro-fission chambers for in-vessel neutron monitoring of ITER

Yamauchi, Michinori*; Nishitani, Takeo; Ochiai, Kentaro; Morimoto, Yuichi*; Hori, Junichi; Ebisawa, Katsuyuki*; Kasai, Satoshi

JAERI-Tech 2002-032, 41 Pages, 2002/03

JAERI-Tech-2002-032.pdf:2.62MB

A micro-fission chamber and a dummy chamber without uranium were fabricated and the performance was tested. They are designed to be installed inside the vacuum vessel of compact ITER (ITER-FEAT) for neutron monitoring. Vacuum leak rate of the chamber, resistances between central conductor and outer sheath, and mechanical strength up to 50G acceleration were confirmed to meet design criteria. Gamma-ray sensitivity was measured with $$^{60}$$Co gamma-ray irradiation facility at JAERI Takasaki. The output signals for gamma-rays in Campbelling mode were estimated to be less than 0.1% those by neutrons at the location behind the blanket module in ITER-FEAT. Detector response for 14 MeV neutrons was investigated with the FNS facility. Excellent linearity between count rates and neutron fluxes was confirmed. According to the test for the change of surrounding materials, the sensitivity was enhanced by slow-downed neutrons, which agreed with the calculation result by MCNP-4C code. As a result, it was concluded that the developed micro-fission chamber is applicable for ITER-FEAT.

JAEA Reports

IFMIF International Fusion Materials Irradiation Facility key element technology phase interim report

IFMIF International Team

JAERI-Tech 2002-022, 97 Pages, 2002/03

JAERI-Tech-2002-022.pdf:9.17MB

Activities of International Fusion Materials Irradiation Facility (IFMIF) have been performed under an IEA collaboration since 1995. IFMIF is an accelerator- based deuteron (D+)-lithium (Li) neutron source designed to produce an intense neutron field (2 MW/m$$^{2}$$, 20 dpa/year for Fe) in a volume of 500 cm$$^{3}$$ for testing candidate fusion materials. In 2000, a 3year Key Element technology Phase (KEP) of IFMIF was started to reduce the key technology risk factors. This interim report summarizes the KEP activities until mid 2001 in the major project work-breakdown areas of accelerator, target, test cell and design integration.

Journal Articles

Shielding design study for the JAERI/KEK spallation neutron source

Maekawa, Fujio; Teshigawara, Makoto; Konno, Chikara; Ikeda, Yujiro; Watanabe, Noboru

JAERI-Conf 2001-002, p.907 - 916, 2001/03

no abstracts in English

JAEA Reports

Proposal of the research complex for the neutron science; The First plan

JAERI-Tech 99-030, 203 Pages, 1999/03

JAERI-Tech-99-030.pdf:12.23MB

no abstracts in English

37 (Records 1-20 displayed on this page)